UNI-III MEMORY CONCEPTS
Memory Hierarchy-

· Memory hierarchy is the hierarchy of memory and storage devices found in a computer system.
· It ranges from the slowest but high capacity auxiliary memory to the fastest but low capacity cache memory.

Need-

There is a trade-off among the three key characteristics of memory namely-
· Cost
· Capacity
· Access time
Memory hierarchy is employed to balance this trade-off.

Memory Hierarchy Diagram-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/12/Memory-Hierarchy-Diagram-Memory-Hierarchy-1.png]

Level-0:

· At level-0, registers are present which are contained inside the CPU.
· Since they are present inside the CPU, they have least access time.
· They are most expensive and therefore smallest in size (in KB).
· Registers are implemented using Flip-Flops.

Level-1:

· At level-1, Cache Memory is present.
· It stores the segments of program that are frequently accessed by the processor.
· It is expensive and therefore smaller in size (in MB).
· Cache memory is implemented using static RAM.

Level-2:

· At level-2, main memory is present.
· It can communicate directly with the CPU and with auxiliary memory devices through an I/O processor.
· It is less expensive than cache memory and therefore larger in size (in few GB).
· Main memory is implemented using dynamic RAM.

Level-3:

· At level-3, secondary storage devices like Magnetic Disk are present.
· They are used as back up storage.
· They are cheaper than main memory and therefore much larger in size (in few TB).

Level-4:

· At level-4, tertiary storage devices like magnetic tape are present.
· They are used to store removable files.
· They are cheapest and largest in size (1-20 TB).

Observations-

The following observations can be made when going down in the memory hierarchy-
· Cost / bit decreases
· Frequency of access decreases
· Capacity increases
· Access time increases

Goals of Memory Hierarchy-

The goals of memory hierarchy are-
· To obtain the highest possible average access speed
· To minimize the total cost of the entire memory system

Memory Organization

· The memory unit is an essential component in any digital computer since it is needed for storing programs and data.

· A very small computer with a limited application may be able to fulfill its intended task without the need for additional storage capacity.

· Most general purpose computers would run more efficiently if they were equipped with additional storage beyond the capacity of the main memory.

· There is just not enough space in one memory unit to accommodate all the programs used in a typical computer.

· Moreover, most computer users accumulate and continue to accumulate large amounts of data-processing software.

· Not all accumulated information is needed by the processor at the same time.

· Therefore, it is more economical to use low-cost storage devices to serve as a backup for storing the information that is not currently used by the CPU.

· The memory unit that communicates directly with the CPU is called the main memory.

· Devices that provide backup storage are auxiliary memory.

· The most common auxiliary memory devices used in computer systems are magnetic disks and tapes.

· They are used for storing system programs, large data files, and other backup information.

· Only programs and data currently needed by the processor reside in main memory.

· All other information is stored in auxiliary memory and transferred to main memory when needed.

· The total memory capacity of a computer can be visualized as being a hierarchy of components.

· The memory hierarchy system consists of all storage devices employed in a computer system from the slow but high-capacity auxiliary memory to a relatively faster main memory, to an even smaller and faster cache memory accessible to the high-speed processing logic.

· Figure 1 illustrates the components in a typical memory hierarchy. At the bottom of the hierarchy are the relatively slow magnetic tapes used to store removable files.

· Next are the magnetic disks used as backup storage. The main memory occupies a central position by being able to communicate directly with the CPU and with auxiliary memory devices through an I/O processor.

· When programs not residing in main memory are needed by the CPU, they are brought in from auxiliary memory.

· Programs not currently needed in main memory are transferred into auxiliary memory to provide space for currently used programs and data.

· A special very-high speed memory called a cache is sometimes used to increase the speed of processing by making current programs and data available to the CPU at a rapid rate.

· The cache memory is employed in computer systems to compensate for the speed differential between main memory access time and processor logic.

· CPU logic is usually faster than main memory access time, with the result that processing speed is limited primarily by the speed of main memory.

· A technique used to compensate for the mismatch in operating speeds is to employ an extremely fast, small cache between the CPU and main memory whose access time is close to processor logic clock cycle time.

· The cache is used for storing segments of programs currently being executed in the CPU and temporary data frequently needed in the present calculations.

· By making programs and data available at a rapid rate, it is possible to increase the performance rate of the computer.

· While the I/O processor manages data transfers between auxiliary memory and main memory, the cache organization is concerned with the transfer of information between main memory and CPU.

· Thus each is involved with a different level in the memory hierarchy system.

· The reason for having two or three levels of memory hierarchy is economics.

· As the storage capacity of the memory increases, the cost per bit for storing binary information decreases and the access time of the memory becomes longer.

· The auxiliary memory has a large storage capacity, is relatively inexpensive, but has low access speed compared to main memory.

· The cache memory is very small, relatively expensive, and has very high access speed. Thus as the memory access speed increases, so does its relative cost.

· The overall goal of using a memory hierarchy is to obtain the highest-possible average access speed while minimizing the total cost of the entire memory system.

· Auxiliary and cache memories are used for different purposes. The cache holds those parts of the program and data that are most heavily used, while the auxiliary memory holds those parts that are not presently used by the CPU.

· Moreover, the CPU has direct access to both cache and main memory but not to auxiliary memory. The transfer from auxiliary to main memory is usually done by means of direct memory access of large blocks of data.

· The typical access time ratio between cache and main memory is about 1 to 7. For example, a typical cache memory may have an access time of 100 ns, while main memory access time may be 700 ns.

· Auxiliary memory average access time is usually 1000 times that of main memory. Block size in auxiliary memory typically ranges from 256 to 2048 words, while cache block size is typically from 1 to 16 words.

· Many operating systems are designed to enable the CPU to process a number of independent programs concurrently.

· This concept, called multiprogramming, refers to the existence of two or more programs in different parts of the memory hierarchy at the same time.

· In this way it is possible to keep all parts of the computer busy by working with several programs in sequence. For example, suppose that a program is being executed in the CPU and an VO transfer is required.

· The CPU initiates the I/O processor to start executing the transfer. This leaves the CPU free to execute another program. In a multiprogramming system, when one program is waiting for input or output transfer, there is another program ready to utilize the CPU.

· With multiprogramming the need arises for running partial programs, for varying the amount of main memory in use by a given program, and for moving programs around the memory hierarchy.

· Computer programs are sometimes too long to be accommodated in the total space available in main memory.

· Moreover, a computer system uses many programs and all the programs cannot reside in main memory at all times. A program with its data normally resides in auxiliary memory.

· When the program or a segment of the program is to be executed, it is transferred to main memory to be executed by the CPU. Thus one may think of auxiliary memory as containing the totality of information stored in a computer system.

· It is the task of the operating system to maintain in main memory a portion of this information that is currently active.

· The part of the computer system that supervises the flow of information between auxiliary memory and main memory is called the memory management system.

Main Memory

· The main memory is the central storage unit in a computer system. It is a relatively large and fast memory used to store programs and data during the computer operation.

· The principal technology used for the main memory is based on semiconductor integrated circuits.

· Integrated circuit RAM chips are available in two possible operating modes, static and dynamic. The static RAM consists essentially of internal flip-flops that store the binary information.

· The stored information remains valid as long as power is applied to the unit. The dynamic RAM stores the binary information in the form of electric charges that are applied to capacitors.

· The capacitors are provided inside the chip by MOS transistors.

· The stored charge on the capacitors tend to discharge with time and the capacitors must be periodically recharged by refreshing the dynamic memory.

· Refreshing is done by cycling through the words every few milliseconds to restore the decaying charge. The dynamic RAM offers reduced power consumption and larger storage capacity in a single memory chip.

· The static RAM is easier to use and has shorter read and write cycles. Most of the main memory in a general-purpose computer is made up of RAM integrated circuit chips, but a portion of the memory may be constructed with ROM chips.

· Originally, RAM was used to refer to a random-access memory, but now it is used to designate a read/write memory to distinguish it from a read-only memory, although ROM is also random access.

· RAM is used for storing the bulk of the programs and data that are subject to change.

· ROM is used for storing programs that are permanently resident in the computer and for tables of constants that do not change in value once the production of the computer is completed.

· Among other things, the ROM portion of main memory is needed for storing an initial program called a bootstrap loader.

· The bootstrap loader is a program whose function is to start the computer software operating when power is turned on.

· Since RAM is volatile, its contents are destroyed when power is turned off.

· The contents of ROM remain unchanged after power is turned off and on again.

· The startup of a computer consists of turning the power on and starting the execution of an initial program.

· Thus when power is turned on, the hardware of the computer sets the program counter to the first address of the bootstrap loader.

· The bootstrap program loads a portion of the operating system from disk to main memory and control is then transferred to the operating system, which prepares the computer for general use.

· RAM and ROM chips are available in a variety of sizes. If the memory needed for the computer is larger than the capacity of one chip, it is necessary to combine a number of chips to form the required memory size.

· To demonstrate the chip interconnection, we will show an example of a 1024 x 8 memory constructed with 128 x 8 RAM chips and 512 x 8 ROM chips.

RAM and ROM Chips

· A RAM chip is better suited for communication with the CPU if it has one or more control inputs that select the chip only when needed.

· Another common feature is a bidirectional data bus that allows the transfer of data either from memory to CPU during a read operation, or from CPU to memory during a write operation.

· A bidirectional bus can be constructed with three-state buffers. A three-state buffer output can be placed in one of three possible states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a highimpedance state.

· The logic 1 and 0 are normal digital signals. The high impedance state behaves like an open circuit, which means that the output does not carry a signal and has no logic significance.

· The block diagram of a RAM chip is shown in Fig. 2. The capacity of the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit[image: typical-ram-chip]address and an 8-bit bidirectional data bus.

· The read and write inputs specifies the memory operation and the two chips select (CS) control inputs are for enabling the chip only when it is selected by the microprocessor.

· The availability of more than one control input to select the chip facilitates the decoding of the address lines when multiple chips are used in the microcomputer.

· The read and write inputs are sometimes combined into one line labeled R/W. When the chip is selected, the two binary states in this line specify the two operations of read or write.

· The function table listed in Fig. 2(b) specifies the operation of the RAM chip. The unit is in operation only when CS1 = 1 and CS2 = 0. The bar on top of the second select variable indicates that this input is enabled when it is equal to 0.

· If the chip select inputs are not enabled, or if they are enabled but the read or write inputs are not enabled, the memory is inhibited and its data bus is in a high-impedance state.

· When CS1 = 1 and CS2 = 0, the memory can be placed in a write or read mode.

· When the WR input is enabled, the memory stores a byte from the data bus into a location specified by the address input lines.

· When the RD input is enabled, the content of the selected byte is placed into the data bus. The RD and WR signals control the memory operation as well as the bus buffers associated with the bidirectional data bus .

· A ROM chip is organized externally in a similar manner. However, since a ROM can only read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown in Fig. 3. For the same-size chip, it is possible to have more bits of ROM than of RAM, because the internal binary cells in ROM occupy less space than in RAM.

· For this reason, the diagram specifies a 512-byte ROM, while the RAM has only 128 bytes.

· The nine address lines in the ROM chip specify any one of the 512 bytes stored in it.

· The two chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. Otherwise, the data bus is in a high-impedance state.

· There is no need for a read or write control because the unit can only read. Thus when the chip is enabled by the two select inputs, the byte selected by the address lines appears on the data bus.

· [image: typical-rom-chip]

Memory Address Map

· The designer of a computer system must calculate the amount of memory required for the particular application and assign it to either RAM or ROM.

· The interconnection between memory and processor is then established from knowledge of the size of memory needed and the type of RAM and ROM chips available.

· The addressing of memory can be established by means of a table that specifies the memory address assigned to each chip.

· The table, called a memory address map, is a pictorial representation of assigned address space for each chip in the system.

· To demonstrate with a particular example, assume that a computer system needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips to be used are specified in Figs. 2 and 3.

· The memory address map for this configuration is shown in Table 1.

· [image: memory-address-map-for-microprocomputer.png]

· The component column specifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns a range of hexadecimal equivalent addresses for each chip.

· The address bus lines are listed in the third column. Although there are 16 lines in the address bus, the table shows only 10 lines because the other 6 are not used in this example and are assumed to be zero.

· The small x'sunder the address bus lines designate those lines that must be connected to the address inputs in each chip. The RAM chips have 128 bytes and need seven address lines.

· The ROM chip has 512 bytes and needs 9 address lines. The x's are always assigned to the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM.

· It is now necessary to distinguish between four RAM chips by assigning to each a different address. For this particular example we choose bus lines 8 and 9 to represent four distinct binary combinations.

· Note that any other pair of unused bus lines can be chosen for this purpose. The table clearly shows that the nine low-order bus lines constitute a memory space for RAM equal to 29 = 512 bytes.

· The distinction between a RAM and ROM address is done with another bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

· The equivalent hexadecimal address for each chip is obtained from the information under the address bus assignment. The address bus lines are subdivided into groups of four bits each so that each group can be represented with a hexadecimal digit.

· The first hexadecimal digit represents lines 13 to 16 and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 11 and 12 are always 0.

· The range of hexadecimal addresses for each component is determined from the x's associated with it. These x's represent a binary number that can range from an all-0's to an all-1's value.

Memory Connection to CPU

· RAM and ROM chips are connected to a CPU through the data and address buses.

· The low-order lines in the address bus select the byte within the chips and other lines in the address bus select a particular chip through its chip select inputs.

· The connection of memory chips to the CPU is shown in Fig. 4. This configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of ROM. It implements the memory map of Table 1. Each RAM receives the seven low-order bits of the address bus to select one of 128 possible bytes.

· The particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is done through a 2 x 4 decoder whose outputs go to the CS1 inputs in each RAM chip.

· Thus, when address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the second RAM chip is selected, and so on. The RD and WR outputs from the microprocessor are applied to the inputs of each RAM chip.

· The selection between RAM and ROM is achieved through bus line 10. The RAMs are selected when the bit in this line is 0, and the ROM when the bit is 1.

· The other chip select input in the ROM is connected to the RD control line for the ROM chip to be enabled only during a read operation. Address bus lines 1 to 9 are applied to the input address of ROM without going through the decoder.

· This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The data bus of the ROM has only an output capability, whereas the data bus connected to the RAMs can transfer information in both directions .

· The example just shown gives an indication of the interconnection complexity that can exist between memory chips and the CPU.

· The more chips that are connected, the more external decoders are required for selection among the chips . The designer must establish a memory map that assigns addresses to the various chips from which the required connections are determined.

· [image: memory-connection-to-cpu]

Auxiliary Memory

· The most common auxiliary memory devices used in computer systems are magnetic disks and tapes. Other components used, but not as frequently, are magnetic drums, magnetic bubble memory, and optical disks.

· To understand fully the physical mechanism of auxiliary memory devices one must have a knowledge of magnetics, electronics, and electromechanical systems.

· Although the physical properties of these storage devices can be quite complex, their logical properties can be characterized and compared by a few parameters. The important characteristics of any deviceare its access mode, access time, transfer rate, capacity, and cost.

· The average time required to reach a storage location in memory and obtain its contents is called the access time.

· In electromechanical devices with moving parts such as disks and tapes, the access time consists of a seek time required to position the read-write head to a location and a transfer time required to transfer data to or from the device. Because the seek time is usually much longer than the transfer time, auxiliary storage is organized in records or blocks.

· A record is a specified number of characters or words. Reading or writing is always done on entire records. The transfer rate is the number of characters or words that the device can transfer per second, after it has been positioned at the beginning of the record.

· Magnetic drums and disks are quite similar in operation. Both consist of high-speed rotating surfaces coated with a magnetic recording medium. The rotating surface of the drum is a cylinder and that of the disk, a round flat plate.

· The recording surface rotates at uniform speed and is not started or stopped during access operations. Bits are recorded as magnetic spots on the surface as it passes a stationary mechanism called a write head.

· Stored bits are detected by a change in magnetic field produced by a recorded spot on the surface as it passes through a read head. The amount of surface available for recording in a disk is greater than in a drum of equal physical size.

· Therefore, more information can be stored on a disk than on a drum of comparable size. For this reason, disks have replaced drums in more recent computers.

Magnetic Disks

· A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material. Often both sides of the disk are used and several disks may be stacked on one spindle with read/write heads available on each surface.

· All disks rotate together at high speed and are not stopped or started for access purposes. Bits are stored in the magnetized surface in spots along concentric circles called tracks.

· The tracks are commonly divided into sections called sectors. In most systems, the minimum quantity of information which can be transferred is a sector. The subdivision of one disk surface into tracks and sectors is shown in Fig. 5.

· [image: magnetic-disk]

· Some units use a single read/write head for each disk surface. In this type of unit, the track address bits are used by a mechanical assembly to move the head into the specified track position before reading or writing.

· In other disk systems, separate read/write heads are provided for each track in each surface. The address bits can then select a particular track electronically through a decoder circuit.

· This type of unit is more expensive and is found only in very large computer systems. Permanent timing tracks are used in disks to synchronize the bits and recognize the sectors.

· A disk system is addressed by address bits that specify the disk number, the disk surface, the sector number and the track within the sector. After the read/write heads are positioned in the specified track, the system has to wait until the rotating disk reaches the specified sector under the read/write head.

· Information transfer is very fast once the beginning of a sector has been reached. Disks may have multiple heads and simultaneous transfer of bits from several tracks at the same time.

· A track in a given sector near the circumference is longer than a track near the center of the disk If bits are recorded with equal density, some tracks will contain more recorded bits than others.

· To make all the records in a sector of equal length, some disks use a variable recording density with higher density on tracks near the center than on tracks near the circumference. This equalizes the number of bits on all tracks of a given sector.

· Disks that are permanently attached to the unit assembly and cannot be removed by the occasional user are called hard disks. A disk drive with removable disks is called a floppy disk. The disks used with a floppy disk drive are small removable disks made of plastic coated with magnetic recording material.

· There are two sizes commonly used, with diameters of 5.25 and 3. 5 inches. The 3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.

· Floppy disks are extensively used in personal computers as a medium for distributing software to computer users.

Magnetic Tape

· A magnetic tape transport consists of the electrical, mechanical, and electronic components to provide the parts and control mechanism for a magnetic-tape unit.

· The tape itself is a strip of plastic coated with a magnetic recording medium. Bits are recorded as magnetic spots on the tape along several tracks.

· Usually, seven or nine bits are recorded simultaneously to form a character together with a parity bit. Read/write heads are mounted one in each track so that data can be recorded and read as a sequence of characters.

· Magnetic tape units can be stopped, started to move forward or in reverse, or can be rewound.

· However, they cannot be started or stopped fast enough between individual characters.

· For this reason, information is recorded in blocks referred to as records. Gaps of unrecorded tape are inserted between records where the tape can be stopped.

· The tape starts moving while in a gap and attains its constant speed by the time it reaches the next record. Each record on tape has an identification bit pattern at the beginning and end.

· By reading the bit pattern at the beginning, the tape control identifies the record number.

· By reading the bit pattern at the end of the record, the control recognizes the beginning of a gap.

· A tape unit is addressed by specifying the record number and the number of characters in the record. Records may be of fixed or variable length.

Associative Memory

· Many data-processing applications require the search of items in a table stored in memory.

· An assembler program searches the symbol address table in order to extract the symbol's binary equivalent.

· An account number may be searched in a file to determine the holder's name and account status.

· The established way to search a table is to store all items where they can be addressed in sequence.

· The search procedure is a strategy for choosing a sequence of addresses, reading the content of memory at each address, and comparing the information read with the item being searched until a match occurs.

· The number of accesses to memory depends on the location of the item and the efficiency of the search algorithm.

· Many search algorithms have been developed to minimize the number of accesses while searching for an item in a random or sequential access memory.

· The time required to find an item stored in memory can be reduced considerably if stored data can be identified for access by the content of the data itself rather than by an address.

· A memory unit accessed by content is called an associative memory or content addressable memory (CAM).

· This type of memory is accessed simultaneously and in parallel on the basis of data content rather than by specific address or location. When a word is written in an associative memory, no address is given.

· The memory is capable of finding an empty unused location to store the word.

· When a word is to be read from an associative memory, the content of the word, or part of the word, is specified.

· The memory locates all words which match the specified content and marks them for reading.

· Because of its organization, the associative memory is uniquely suited to do parallel searches by data association. Moreover, searches can be done on an entire word or on a specific field within a word.

· An associative memory is more expensive than a random access memory because each cell must have storage capability as well as logic circuits for matching its content with an external argument.

· For this reason, associative memories are used in applications where the search time is very critical and must be very short.

Hardware Organization

· The block diagram of an associative memory is shown in Fig. 6. It consists of a memory array and logic for m words with n bits per word. The argument register A and key register K each have n bits, one for each bit of a word.

· The match register M has m bits, one for each memory word. Each word in memory is compared in parallel with the content of the argument register. The words that match the bits of the argument register set a corresponding bit in the match register.

· After the matching process, those bits in the match register that have been set indicate the fact that their corresponding words have been matched.

· Reading is accomplished by a sequential access to memory for those words whose corresponding bits in the match register have been set.

· The key register provides a mask for choosing a particular field or key in the argument word.

· The entire argument is compared with each memory word if the key register contains all 1's.

· Otherwise, only those bits in the argument that have 1's in their corresponding position of the key register are compared.

· [image: associative-memory]

· Thus the key provides a mask or identifying piece of information which specifies how the reference to memory is made. To illustrate with a numerical example, suppose that the argument register A and the key register K have the bit configuration shown below. Only the three leftmost bits of A are compared with memory words because K has 1's in these positions.

· [image: associative-memory]

· Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word are equal.

· The relation between the memory array and external registers in an associative memory is shown in Fig. 7.

· The cells in the array are marked by the letter C with two subcripts. The first subscript gives the word number and the second specifies the bit position in the word.

· Thus cell Cij is the cell for bit j in word i. A bit Aj in the argument register is compared with all the bits in column j of the array provided that Kj = 1.

· This is done for all columns j = 1, 2, . . . , n. If a match occurs between all the unmasked bits of the argument and the bits in word i, the corresponding bit Mi in the match register is set to 1.

· If one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0.

· [image: associative-memory-mapping-word-to-cells]

Match Logic

· The match logic for each word can be derived from the comparison algorithm for two binary numbers.

· First, we neglect the key bits and compare the argument in A with the bits stored in the cells of the words. Word i is equal to the argument in A if Aj = Fij for j = 1, 2, ... , n. Two bits are equal if they are both 1 or both 0.

· The equality of two bits can be expressed logically by the Boolean function xj=AjFij+A′jF′ij where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 0.

· For a word i to be equal to the argument in A we must have all xj variables equal to 1.

· This is the condition for setting the corresponding match bit Mi to 1. The Boolean function for this condition is Mi=x1x2x3...xn and constitutes the AND operation of all pairs of matched bits in a word.

· [image: one-cell-of-associative-memory]

· We now include the key bit Kj in the comparison logic. The requirement is that if Kj = 0, the corresponding bits of Aj and Fij need no comparison. Only when Kj = 1 must they be compared. This requirement is achieved by ORing each term with K'j thus:

· [image: one-cell-of-associative-memory]

· When Kj = 1, we have K'j = 0 and xj + 0 = xj . When Kj = 0, then K'j = 1 and xj + 1 = 1. A term (xj + K'j) will be in the 1 state if its pair of bits is not compared.

· This is necessary because each term is ANDed with all other terms so that an output of 1 will have no effect. The comparison of the bits has an effect only when Kj = 1.

· The match logic for word i in an associative memory can now be expressed by the following Boolean function:

· [image: one-cell-of-associative-memory]

· Each term in the expression will be equal to 1 if its corresponding Kj = 0. If Kj = 1, the term will be either 0 or 1 depending on the value of Xj. A match will occur and Mj will be equal to 1 if all terms are equal to 1.

· If we substitute the original definition of xj, the Boolean function above can be expressed as follows:

· [image: one-cell-of-associative-memory]

· where ∏ is a product symbol designating the AND operation of all n terms. We need m such functions, one for each word i = 1, 2, 3, ... , m.

· The circuit for matching one word is shown in Fig. 9. Each cell requires two AND gates and one OR gate. The inverters for Aj and Kj are needed once for each column and are used for all bits in the column.

· The output of all OR gates in the cells of the same word go to the input of a common AND gate to generate the match signal for Mi. Mi will be logic 1 if a match occurs and 0 if no match occurs.

· Note that if the key register contains all 0' s, output Mj will be a 1 irrespective of the value of A or the word. This occurrence must be avoided during normal operation.

Read Operation

· If more than one word in memory matches the unmasked argument field, all the matched words will have 1's in the corresponding bit position of the match register.

· It is then necessary to scan the bits of the match register one at a time. The matched words are read in sequence by applying a read signal to each word line whose corresponding Mi bit is a 1.

· [image: match-logic-for-one-word-of-associative-memory]

· In most applications, the associative memory stores a table with no two identical items'under a given key.

· In this case, only one word may match the unmasked argument field. By connecting output Mi directly to the read line in the same word position (instead of the M register), the content of the matched word will be presented automatically at the output lines and no special read command signal is needed.

· Furthermore, if we exclude words having a zero content, an all-zero output will indicate that no match occurred and that the searched item is not available in memory

Write Operation

· An associative memory must have a write capability for storing the information to be searched.

· Writing in an associative memory can take different forms, depending on the application.

· If the entire memory is loaded with new information at once prior to a search operation then the writing can be done by addressing each location in sequence.

· This will make the device a randomaccess memory for writing and a content addressable memory for reading. The advantage here is that the address for input can be decoded as in a randomaccess memory.

· Thus instead of having m address lines, one for each word in memory, the number of address lines can be reduced by the decoder to d lines, where m = 2d.

· If unwanted words have to be deleted and new words inserted one at a time, there is a need for a special register to distinguish between active and inactive words.

· This register, sometimes called a tag register, would have as many bits as there are words in the memory.

· For every active word stored in memory, the corresponding bit in the tag register is set to 1. A word is deleted from memory by clearing its tag bit to 0. Words are stored in memory by scanning the tag register until the first 0 bit is encountered.

· This gives the first available inactive word and a position for writing a new word. After the new word is stored in memory it is made active by setting its tag bit to 1. An unwanted word when deleted from memory can be cleared to all 0' s if this value is used to specify an empty location.

· Moreover, the words that have a tag bit of 0 must be masked (together with the Kj bits) with the argument word so that only active words are compared.

Cache Memory

· Analysis of a large number of typical programs has shown that the references to memory at any given interval of time tend to be confined within a few localized areas in memory.

· This phenomenon is known as the property of locality of reference locality of reference.

· The reason for this property may be understood considering that a typical computer program flows in a straight-line fashion with program loops and subroutine calls encountered frequently.

· When a program loop is executed, the CPU repeatedly refers to the set of instructions in memory that constitute the loop. Every time a given subroutine is called, its set of instructions are fetched from memory.

· Thus loops and subroutines tend to localize the references to memory for fetching instructions. To a lesser degree, memory references to data also tend to be localized.

· Table-lookup procedures repeatedly refer to that portion in memory where the table is stored. Iterative procedures refer to common memory locations and array of numbers are confined within a local portion of memory.

· The result of all these observations is the locality of reference property, which states that over a short interval of time, the addresses generated by a typical program refer to a few localized areas of memory repeatedly, while the remainder of memory is accessed relatively infrequently.

· If the active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, thus reducing the total execution time of the program.

· Such a fast small memory is referred to as a cache memory. It is placed between the CPU and main memory as illustrated in Fig. 1 .

· The cache memory access time is less than the access time of main memory by a factor of 5 to 10. The cache is the fastest component in the memory hierarchy and approaches the speed of CPU components.

· The fundamental idea of cache organization is that by keeping the most frequently accessed instructions and data in the fast cache memory, the aver-age memory access time will approach the access time of the cache.

· Although the cache is only a small fraction of the size of main memory, a large fraction of memory requests will be found in the fast cache memory because of the locality of reference property of programs.

· The basic operation of the cache is as follows. When the CPU needs to access memory, the cache is examined. If the word is found in the cache, it is read from the fast memory.

· If the word addressed by the CPU is not found in the cache, the main memory is accessed to read the word. A block of words containing the one just accessed is then transferred from main memory to cache memory. The block size may vary from one word (the one just accessed) to about 16 words adjacent to the one just accessed. In this manner, some data are transferred to cache so that future references to memory find the required words in the fast cache memory.

· The performance of cache memory is frequently measured in terms of a quantity called hit ratio . When the CPU refers to memory and finds the word in cache, it is said to produce a hit. If the word is not found in cache, it is in main memory and it counts as a miss.

· The ratio of the number of hits divided by the total CPU references to memory (hits plus misses) is the hit ratio.

· The hit ratio is best measured experimentally by running representative programs in the computer and measuring the number of hits and misses during a given interval of time.

· Hit ratios of 0.9 and higher have been reported. This high ratio verifies the validity of the locality of reference property.

· The average memory access time of a computer system can be improved considerably by use of a cache. If the hit ratio is high enough so that most of the time the CPU accesses the cache instead of main memory, the average access time is closer to the access time of the fast cache memory.

· For example, a computer with cache access time of 100 ns, a main memory access time of 1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This is a considerable improvement over a similar computer without a cache memory, whose access time is 1000 ns.

· The basic characteristic of cache memory is its fast access time. Therefore, very little or no time must be wasted when searching for words in the cache. The transformation of data from main memory to cache memory is referred to as a mapping process.

Cache Memory-

· Cache memory is a Random Access Memory.
· The main advantage of cache memory is its very fast speed.
· It can be accessed by the CPU at much faster speed than main memory.

Location-

· Cache memory lies on the path between the CPU and the main memory.
· It facilitates the transfer of data between the processor and the main memory at the speed which matches to the speed of the processor.

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Cache-Memory-Location.png]

· Data is transferred in the form of words between the cache memory and the CPU.
· Data is transferred in the form of blocks or pages between the cache memory and the main memory.

Purpose-

· The fast speed of the cache memory makes it extremely useful.
· It is used for bridging the speed mismatch between the fastest CPU and the main memory.
· It does not let the CPU performance suffer due to the slower speed of the main memory.

Execution Of Program-

· Whenever any program has to be executed, it is first loaded in the main memory.
· The portion of the program that is mostly probably going to be executed in the near future is kept in the cache memory.
· This allows CPU to access the most probable portion at a faster speed.

Step-01:

Whenever CPU requires any word of memory, it is first searched in the CPU registers.
Now, there are two cases possible-

Case-01:

· If the required word is found in the CPU registers, it is read from there.

Case-02:

· If the required word is not found in the CPU registers, Step-02 is followed.

Step-02:

· When the required word is not found in the CPU registers, it is searched in the cache memory.
· Tag directory of the cache memory is used to search whether the required word is present in the cache memory or not.

Now, there are two cases possible-

Case-01:

· If the required word is found in the cache memory, the word is delivered to the CPU.
· This is known as Cache hit.

Case-02:

· If the required word is not found in the cache memory, Step-03 is followed.
· This is known as Cache miss.

Step-03:

· When the required word is not found in the cache memory, it is searched in the main memory.
· Page Table is used to determine whether the required page is present in the main memory or not.

Now, there are two cases possible-

Case-01:

If the page containing the required word is found in the main memory,
· The page is mapped from the main memory to the cache memory.
· This mapping is performed using cache mapping techniques.
· Then, the required word is delivered to the CPU.

Case-02:

If the page containing the required word is not found in the main memory,
· A page fault occurs.
· The page containing the required word is mapped from the secondary memory to the main memory.
· Then, the page is mapped from the main memory to the cache memory.
· Then, the required word is delivered to the CPU.

Multilevel Cache Organization-

· A multilevel cache organization is an organization where cache memories of different sizes are organized at multiple levels to increase the processing speed to a greater extent.
· The smaller the size of cache, the faster its speed.
· The smallest size cache memory is placed closest to the CPU.
· This helps to achieve better performance in terms of speed.

Example-

Three level cache organization consists of three cache memories of different size organized at three different levels as shown below-

Size (L1 Cache) < Size (L2 Cache) < Size (L3 Cache) < Size (Main Memory)

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Multilevel-Cache-Organization-Three-Level-Cache-Organization.png]

Cache Memory-

Before you go through this article, make sure that you have gone through the previous article on Cache Memory.

We have discussed-

	Cache memory bridges the speed mismatch between the processor and the main memory.

When cache hit occurs,
· The required word is present in the cache memory.
· The required word is delivered to the CPU from the cache memory.

When cache miss occurs,
· The required word is not present in the cache memory.
· The page containing the required word has to be mapped from the main memory.
· This mapping is performed using cache mapping techniques.

In this article, we will discuss different cache mapping techniques.

Cache Mapping-

· Cache mapping defines how a block from the main memory is mapped to the cache memory in case of a cache miss.
OR
· Cache mapping is a technique by which the contents of main memory are brought into the cache memory.

The following diagram illustrates the mapping process-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Cache-Mapping-Diagram-2.png]

Now, before proceeding further, it is important to note the following points-

	NOTES

· Main memory is divided into equal size partitions called as blocks or frames.
· Cache memory is divided into partitions having same size as that of blocks called as lines.
· During cache mapping, block of main memory is simply copied to the cache and the block is not actually brought from the main memory.

Cache Mapping Techniques-

Cache mapping is performed using following three different techniques-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Cache-Mapping-Techniques-Cache-Mapping.png]

1. Direct Mapping
2. Fully Associative Mapping
3. K-way Set Associative Mapping

1. Direct Mapping-

In direct mapping,
· A particular block of main memory can map only to a particular line of the cache.
· The line number of cache to which a particular block can map is given by-

	Cache line number
= (Main Memory Block Address) Modulo (Number of lines in Cache)

Example-

· Consider cache memory is divided into ‘n’ number of lines.
· Then, block ‘j’ of main memory can map to line number (j mod n) only of the cache.

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Direct-Mapping-Diagram.png]

Need of Replacement Algorithm-

In direct mapping,
· There is no need of any replacement algorithm.
· This is because a main memory block can map only to a particular line of the cache.
· Thus, the new incoming block will always replace the existing block (if any) in that particular line.

Division of Physical Address-

In direct mapping, the physical address is divided as-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Direct-Mapping-Physical-Address-Division.png]

2. Fully Associative Mapping-

In fully associative mapping,
· A block of main memory can map to any line of the cache that is freely available at that moment.
· This makes fully associative mapping more flexible than direct mapping.

Example-

Consider the following scenario-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Fully-Associative-Mapping-Diagram.png]

Here,
· All the lines of cache are freely available.
· Thus, any block of main memory can map to any line of the cache.
· Had all the cache lines been occupied, then one of the existing blocks will have to be replaced.

Need of Replacement Algorithm-

In fully associative mapping,
· A replacement algorithm is required.
· Replacement algorithm suggests the block to be replaced if all the cache lines are occupied.
· Thus, replacement algorithm like FCFS Algorithm, LRU Algorithm etc is employed.

Division of Physical Address-

In fully associative mapping, the physical address is divided as-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Fully-Associative-Mapping-Division-of-Physical-Address.png]

3. K-way Set Associative Mapping-

In k-way set associative mapping,
· Cache lines are grouped into sets where each set contains k number of lines.
· A particular block of main memory can map to only one particular set of the cache.
· However, within that set, the memory block can map any cache line that is freely available.
· The set of the cache to which a particular block of the main memory can map is given by-

	Cache set number
= (Main Memory Block Address) Modulo (Number of sets in Cache)

Also Read- Set Associative Mapping | Implementation and Formulas

Example-

Consider the following example of 2-way set associative mapping-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/2-Way-Set-Associative-Mapping-Diagram-1.png]

Here,
· k = 2 suggests that each set contains two cache lines.
· Since cache contains 6 lines, so number of sets in the cache = 6 / 2 = 3 sets.
· Block ‘j’ of main memory can map to set number (j mod 3) only of the cache.
· Within that set, block ‘j’ can map to any cache line that is freely available at that moment.
· If all the cache lines are occupied, then one of the existing blocks will have to be replaced.

Need of Replacement Algorithm-

· Set associative mapping is a combination of direct mapping and fully associative mapping.
· It uses fully associative mapping within each set.
· Thus, set associative mapping requires a replacement algorithm.

Division of Physical Address-

In set associative mapping, the physical address is divided as-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/K-way-Set-Associative-Mapping-Division-of-Physical-Address.png]

Special Cases-

· If k = 1, then k-way set associative mapping becomes direct mapping i.e.

	1-way Set Associative Mapping ≡ Direct Mapping

· If k = Total number of lines in the cache, then k-way set associative mapping becomes fully associative mapping.

GATE PROBLEMS:

Cache Mapping-

Before you go through this article, make sure that you have gone through the previous article on Cache Mapping.

	Cache mapping is a technique by which the contents of main memory are brought into the cache memory.

Different cache mapping techniques are-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Cache-Mapping-Techniques-Cache-Mapping.png]

1. Direct Mapping
2. Fully Associative Mapping
3. K-way Set Associative Mapping

In this article, we will discuss about direct mapping in detail.

Direct Mapping-

In direct mapping,
· A particular block of main memory can map to only one particular line of the cache.
· The line number of cache to which a particular block can map is given by-

	Cache line number
= (Main Memory Block Address) Modulo (Number of lines in Cache)

Division of Physical Address-

In direct mapping, the physical address is divided as-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/Direct-Mapping-Physical-Address-Division.png]

Direct Mapped Cache-

	Direct mapped cache employs direct cache mapping technique.

The following steps explain the working of direct mapped cache-

After CPU generates a memory request,
· The line number field of the address is used to access the particular line of the cache.
· The tag field of the CPU address is then compared with the tag of the line.
· If the two tags match, a cache hit occurs and the desired word is found in the cache.
· If the two tags do not match, a cache miss occurs.
· In case of a cache miss, the required word has to be brought from the main memory.
· It is then stored in the cache together with the new tag replacing the previous one.

Implementation-

The following diagram shows the implementation of direct mapped cache-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Implementation-1.png]

(For simplicity, this diagram shows does not show all the lines of multiplexers)

The steps involved are as follows-

Step-01:

· Each multiplexer reads the line number from the generated physical address using its select lines in parallel.
· To read the line number of L bits, number of select lines each multiplexer must have = L.

Step-02:

· After reading the line number, each multiplexer goes to the corresponding line in the cache memory using its input lines in parallel.
· Number of input lines each multiplexer must have = Number of lines in the cache memory

Step-03:

· Each multiplexer outputs the tag bit it has selected from that line to the comparator using its output line.
· Number of output line in each multiplexer = 1.

	UNDERSTAND

It is important to understand-
· A multiplexer can output only a single bit on output line.
· So, to output the complete tag to the comparator,
Number of multiplexers required = Number of bits in the tag
· Each multiplexer is configured to read the tag bit at specific location.

Example-

· 1st multiplexer is configured to output the first bit of the tag.
· 2nd multiplexer is configured to output the second bit of the tag.
· 3rd multiplexer is configured to output the third bit of the tag and so on.
So,
· Each multiplexer selects the tag bit of the selected line for which it has been configured and outputs on the output line.
· The complete tag as a whole is sent to the comparator for comparison in parallel.

Step-04:

· Comparator compares the tag coming from the multiplexers with the tag of the generated address.
· Only one comparator is required for the comparison where-
Size of comparator = Number of bits in the tag
· If the two tags match, a cache hit occurs otherwise a cache miss occurs.

Hit latency-

The time taken to find out whether the required word is present in the Cache Memory or not is called as hit latency.

For direct mapped cache,
	Hit latency = Multiplexer latency + Comparator latency

Also Read- Set Associative Cache | Implementation & Formulas

Important Results-

Following are the few important results for direct mapped cache-
· Block j of main memory can map to line number (j mod number of lines in cache) only of the cache.
· Number of multiplexers required = Number of bits in the tag
· Size of each multiplexer = Number of lines in cache x 1
· Number of comparators required = 1
· Size of comparator = Number of bits in the tag
· Hit latency = Multiplexer latency + Comparator latency

Direct Mapping-

Before you go through this article, make sure that you have gone through the previous article on Direct Mapping.

In direct mapping,
· A particular block of main memory can be mapped to one particular cache line only.
· Block ‘j’ of main memory will map to line number (j mod number of cache lines) of the cache.
· There is no need of any replacement algorithm.

In this article, we will discuss practice problems based on direct mapping.

Also Read- Cache Mapping Techniques

PRACTICE PROBLEMS BASED ON DIRECT MAPPING-

Problem-01:

Consider a direct mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find-
1. Number of bits in tag
2. Tag directory size

Solution-

Given-
· Cache memory size = 16 KB
· Block size = Frame size = Line size = 256 bytes
· Main memory size = 128 KB

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,
Size of main memory
= 128 KB
= 217 bytes
Thus, Number of bits in physical address = 17 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-01-Diagram-01.png]

Number of Bits in Block Offset-

We have,
Block size
= 256 bytes
= 28 bytes
Thus, Number of bits in block offset = 8 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-01-Diagram-02.png]

Number of Bits in Line Number-

Total number of lines in cache
= Cache size / Line size
= 16 KB / 256 bytes
= 214 bytes / 28 bytes
= 26 lines
Thus, Number of bits in line number = 6 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-01-Diagram-03.png]

Number of Bits in Tag-

Number of bits in tag
= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)
= 17 bits – (6 bits + 8 bits)
= 17 bits – 14 bits
= 3 bits
Thus, Number of bits in tag = 3 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-01-Diagram-04.png]

Tag Directory Size-

Tag directory size
= Number of tags x Tag size
= Number of lines in cache x Number of bits in tag
= 26 x 3 bits
= 192 bits
= 24 bytes
Thus, size of tag directory = 24 bytes

Problem-02:

Consider a direct mapped cache of size 512 KB with block size 1 KB. There are 7 bits in the tag. Find-
1. Size of main memory
2. Tag directory size

Solution-

Given-
· Cache memory size = 512 KB
· Block size = Frame size = Line size = 1 KB
· Number of bits in tag = 7 bits

We consider that the memory is byte addressable.

Number of Bits in Block Offset-

We have,
Block size
= 1 KB
= 210 bytes
Thus, Number of bits in block offset = 10 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-02-Diagram-01.png]

Number of Bits in Line Number-

Total number of lines in cache
= Cache size / Line size
= 512 KB / 1 KB
= 29 lines
Thus, Number of bits in line number = 9 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-02-Diagram-02.png]

Number of Bits in Physical Address-

Number of bits in physical address
= Number of bits in tag + Number of bits in line number + Number of bits in block offset
= 7 bits + 9 bits + 10 bits
= 26 bits
Thus, Number of bits in physical address = 26 bits

Size of Main Memory-

We have,
Number of bits in physical address = 26 bits
Thus, Size of main memory
= 226 bytes
= 64 MB

Tag Directory Size-

Tag directory size
= Number of tags x Tag size
= Number of lines in cache x Number of bits in tag
= 29 x 7 bits
= 3584 bits
= 448 bytes
Thus, size of tag directory = 448 bytes

Problem-03:

Consider a direct mapped cache with block size 4 KB. The size of main memory is 16 GB and there are 10 bits in the tag. Find-
1. Size of cache memory
2. Tag directory size

Solution-

Given-
· Block size = Frame size = Line size = 4 KB
· Size of main memory = 16 GB
· Number of bits in tag = 10 bits

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,
Size of main memory
= 16 GB
= 234 bytes
Thus, Number of bits in physical address = 34 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-03-Diagram-1.png]

Number of Bits in Block Offset-

We have,
Block size
= 4 KB
= 212 bytes
Thus, Number of bits in block offset = 12 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-03-Diagram-02-1.png]

Number of Bits in Line Number-

Number of bits in line number
= Number of bits in physical address – (Number of bits in tag + Number of bits in block offset)
= 34 bits – (10 bits + 12 bits)
= 34 bits – 22 bits
= 12 bits
Thus, Number of bits in line number = 12 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-03-Diagram-03.png]

Number of Lines in Cache-

We have-
Number of bits in line number = 12 bits
Thus, Total number of lines in cache = 212 lines

Size of Cache Memory-

Size of cache memory
= Total number of lines in cache x Line size
= 212 x 4 KB
= 214 KB
= 16 MB
Thus, Size of cache memory = 16 MB

Tag Directory Size-

Tag directory size
= Number of tags x Tag size
= Number of lines in cache x Number of bits in tag
= 212 x 10 bits
= 40960 bits
= 5120 bytes
Thus, size of tag directory = 5120 bytes

Also Read- Practice Problems On Set Associative Mapping

Problem-04:

Consider a direct mapped cache of size 32 KB with block size 32 bytes. The CPU generates 32 bit addresses. The number of bits needed for cache indexing and the number of tag bits are respectively-
0. 10, 17
1. 10, 22
2. 15, 17
3. 5, 17

Solution-

Given-
· Cache memory size = 32 KB
· Block size = Frame size = Line size = 32 bytes
· Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,
Block size
= 32 bytes
= 25 bytes
Thus, Number of bits in block offset = 5 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-04-Diagram-01.png]

Number of Bits in Line Number-

Total number of lines in cache
= Cache size / Line size
= 32 KB / 32 bytes
= 210 lines
Thus, Number of bits in line number = 10 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-04-Diagram-02.png]

Number of Bits Required For Cache Indexing-

Number of bits required for cache indexing
= Number of bits in line number
= 10 bits

Number Of Bits in Tag-

Number of bits in tag
= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)
= 32 bits – (10 bits + 5 bits)
= 32 bits – 15 bits
= 17 bits
Thus, Number of bits in tag = 17 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-04-Diagram-03.png]

Thus, Option (A) is correct.

Problem-05:

Consider a machine with a byte addressable main memory of 232 bytes divided into blocks of size 32 bytes. Assume that a direct mapped cache having 512 cache lines is used with this machine. The size of the tag field in bits is ______.

Solution-

Given-
· Main memory size = 232 bytes
· Block size = Frame size = Line size = 32 bytes
· Number of lines in cache = 512 lines

Number of Bits in Physical Address-

We have,
Size of main memory
= 232 bytes
Thus, Number of bits in physical address = 32 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-05-Diagram-01.png]

Number of Bits in Block Offset-

We have,
Block size
= 32 bytes
= 25 bytes
Thus, Number of bits in block offset = 5 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-05-Diagram-02.png]

Number of Bits in Line Number-

Total number of lines in cache
= 512 lines
= 29 lines
Thus, Number of bits in line number = 9 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-05-Diagram-03.png]

Number Of Bits in Tag-

Number of bits in tag
= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)
= 32 bits – (9 bits + 5 bits)
= 32 bits – 14 bits
= 18 bits
Thus, Number of bits in tag = 18 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-05-Diagram-04.png]

Problem-06:

An 8 KB direct-mapped write back cache is organized as multiple blocks, each of size 32 bytes. The processor generates 32 bit addresses. The cache controller maintains the tag information for each cache block comprising of the following-
· 1 valid bit
· 1 modified bit
· As many bits as the minimum needed to identify the memory block mapped in the cache
What is the total size of memory needed at the cache controller to store meta data (tags) for the cache?
0. 4864 bits
1. 6144 bits
2. 6656 bits
3. 5376 bits

Solution-

Given-
· Cache memory size = 8 KB
· Block size = Frame size = Line size = 32 bytes
· Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,
Block size
= 32 bytes
= 25 bytes
Thus, Number of bits in block offset = 5 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-06-Diagram-01-1.png]

Number of Bits in Line Number-

Total number of lines in cache
= Cache memory size / Line size
= 8 KB / 32 bytes
= 213 bytes / 25 bytes
= 28 lines
Thus, Number of bits in line number = 8 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-06-Diagram-02-1.png]

Number Of Bits in Tag-

Number of bits in tag
= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)
= 32 bits – (8 bits + 5 bits)
= 32 bits – 13 bits
= 19 bits
Thus, Number of bits in tag = 19 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Direct-Mapping-Problem-06-Diagram-03.png]

Memory Size Needed At Cache Controller-

Size of memory needed at cache controller
= Number of lines in cache x (1 valid bit + 1 modified bit + 19 bits to identify block)
= 28 x 21 bits
= 5376 bits

Fully Associative Mapping-

Before you go through this article, make sure that you have gone through the previous article on Cache Mapping.

In fully associative mapping,
· A block of main memory can be mapped to any freely available cache line.
· This makes fully associative mapping more flexible than direct mapping.
· A replacement algorithm is needed to replace a block if the cache is full.

In this article, we will discuss practice problems based on fully associative mapping.

Also Read- Practice Problems On Direct Mapping

PRACTICE PROBLEMS BASED ON FULLY ASSOCIATIVE MAPPING-

Problem-01:

Consider a fully associative mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find-
1. Number of bits in tag
2. Tag directory size

Solution-

Given-
· Cache memory size = 16 KB
· Block size = Frame size = Line size = 256 bytes
· Main memory size = 128 KB

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,
Size of main memory
= 128 KB
= 217 bytes
Thus, Number of bits in physical address = 17 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-01-Diagram-01.png]

Number of Bits in Block Offset-

We have,
Block size
= 256 bytes
= 28 bytes
Thus, Number of bits in block offset = 8 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-01-Diagram-02.png]

Number of Bits in Tag-

Number of bits in tag
= Number of bits in physical address – Number of bits in block offset
= 17 bits – 8 bits
= 9 bits
Thus, Number of bits in tag = 9 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-01-Diagram-03.png]

Number of Lines in Cache-

Total number of lines in cache
= Cache size / Line size
= 16 KB / 256 bytes
= 214 bytes / 28 bytes
= 26 lines

Tag Directory Size-

Tag directory size
= Number of tags x Tag size
= Number of lines in cache x Number of bits in tag
= 26 x 9 bits
= 576 bits
= 72 bytes
Thus, size of tag directory = 72 bytes

Problem-02:

Consider a fully associative mapped cache of size 512 KB with block size 1 KB. There are 17 bits in the tag. Find-
1. Size of main memory
2. Tag directory size

Solution-

Given-
· Cache memory size = 512 KB
· Block size = Frame size = Line size = 1 KB
· Number of bits in tag = 17 bits

We consider that the memory is byte addressable.

Number of Bits in Block Offset-

We have,
Block size
= 1 KB
= 210 bytes
Thus, Number of bits in block offset = 10 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-02-Diagram-01.png]

Number of Bits in Physical Address-

Number of bits in physical address
= Number of bits in tag + Number of bits in block offset
= 17 bits + 10 bits
= 27 bits
Thus, Number of bits in physical address = 27 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-02-Diagram-02.png]

Size of Main Memory-

We have,
Number of bits in physical address = 27 bits
Thus, Size of main memory
= 227 bytes
= 128 MB

Number of Lines in Cache-

Total number of lines in cache
= Cache size / Line size
= 512 KB / 1 KB
= 512 lines
= 29 lines

Tag Directory Size-

Tag directory size
= Number of tags x Tag size
= Number of lines in cache x Number of bits in tag
= 29 x 17 bits
= 8704 bits
= 1088 bytes
Thus, size of tag directory = 1088 bytes

Also Read- Practice Problems On Set Associative Mapping

Problem-03:

Consider a fully associative mapped cache with block size 4 KB. The size of main memory is 16 GB. Find the number of bits in tag.

Solution-

Given-
· Block size = Frame size = Line size = 4 KB
· Size of main memory = 16 GB

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,
Size of main memory
= 16 GB
= 234 bytes
Thus, Number of bits in physical address = 34 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-03-Diagram-01.png]

Number of Bits in Block Offset-

We have,
Block size
= 4 KB
= 212 bytes
Thus, Number of bits in block offset = 12 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-03-Diagram-02.png]

Number of Bits in Tag-

Number of bits in tag
= Number of bits in physical address – Number of bits in block offset
= 34 bits – 12 bits
= 22 bits
Thus, Number of bits in tag = 22 bits

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Fully-Associative-Mapping-Problem-03-Diagram-03.png]

Set Associative Mapping-

In k-way set associative mapping,
· Cache lines are grouped into sets where each set contains k number of lines.
· A particular block of main memory can map to only one particular set of the cache.
· However, within that set, the memory block can map to any freely available cache line.
· The set of the cache to which a particular block of the main memory can map is given by-

	Cache set number
= (Main Memory Block Address) Modulo (Number of sets in Cache)

Division of Physical Address-

In set associative mapping, the physical address is divided as-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/06/K-way-Set-Associative-Mapping-Division-of-Physical-Address.png]

Set Associative Cache-

	Set associative cache employs set associative cache mapping technique.

The following steps explain the working of set associative cache-

After CPU generates a memory request,
· The set number field of the address is used to access the particular set of the cache.
· The tag field of the CPU address is then compared with the tags of all k lines within that set.
· If the CPU tag matches to the tag of any cache line, a cache hit occurs.
· If the CPU tag does not match to the tag of any cache line, a cache miss occurs.
· In case of a cache miss, the required word has to be brought from the main memory.
· If the cache is full, a replacement is made in accordance with the employed replacement policy.

Implementation-

The following diagram shows the implementation of 2-way set associative cache-

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/11/Set-Associative-Mapping-Implementation.png]
(For simplicity, this diagram shows does not show all the lines of multiplexers)

The steps involved are as follows-

Step-01:

· Each multiplexer reads the set number from the generated physical address using its select lines in parallel.
· To read the set number of S bits, number of select lines each multiplexer must have = S.

Step-02:

· After reading the set number, each multiplexer goes to the corresponding set in the cache memory.
· Then, each multiplexer goes to the lines of that set using its input lines in parallel.
· Number of input lines each multiplexer must have = Number of lines in one set

Step-03:

· Each multiplexer outputs the tag bit it has selected from the lines of selected set to the comparators using its output line.
· Number of output line in each multiplexer = 1.

	UNDERSTAND

It is important to understand-
· A multiplexer can output only a single bit on output line.
· So, to output one complete tag to the comparator,
Number of multiplexers required = Number of bits in the tag
· If there are k lines in one set, then number of tags to output = k, thus-
Number of multiplexers required = Number of lines in one set (k) x Number of bits in the tag
· Each multiplexer is configured to read the tag bit of specific line at specific location.
· So, each multiplexer selects the tag bit for which it has been configured and outputs on the output line.
· The complete tags as whole are sent to the comparators for comparison in parallel.

Step-04:

· Comparators compare the tags coming from the multiplexers with the tag of the generated address.
· This comparison takes place in parallel.
· If there are k lines in one set (thus k tags), then-
Number of comparators required = k
and
Size of each comparator = Number of bits in the tag
· The output result of each comparator is fed as an input to an OR Gate.
· OR Gate is usually implemented using 2 x 1 multiplexer.
· If the output of OR Gate is 1, a cache hit occurs otherwise a cache miss occurs.

Hit latency-

· The time taken to find out whether the required word is present in the Cache Memory or not is called as hit latency.

For set associative mapping,
	Hit latency = Multiplexer latency + Comparator latency + OR Gate latency

Also Read- Direct Mapped Cache | Implementation & Formulas

Important Results-

Following are the few important results for set associative cache-
· Block j of main memory maps to set number (j mod number of sets in cache) of the cache.
· Number of multiplexers required = Number of lines in one set (k) x Number of bits in tag
· Size of each multiplexer = Number of lines in one set (k) x 1
· Number of comparators required = Number of lines in one set (k)
· Size of each comparator = Number of bits in the tag
· Hit latency = Multiplexer latency + Comparator latency + OR Gate latency

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image1.png

image51.png

image52.png

image2.png

image3.png

image4.png

